
Practical Computation of Graph VC-Dimension
David Coudert
Université Côte d’Azur, Inria, I3S, CNRS, France

Mónika Csikós
IRIF, CNRS and Université Paris Cité, Paris, France

Guillaume Ducoffe
University of Bucharest, Romania
National Institute for Research and Development in Informatics, Romania

Laurent Viennot
Inria, DI ENS, Paris, France

Abstract
For any set system H = (V,R), R ⊆ 2V , a subset S ⊆ V is called shattered if every S′ ⊆ S results
from the intersection of S with some set in R. The VC-dimension of H is the size of a largest
shattered set in V . In this paper, we focus on the problem of computing the VC-dimension of graphs.
In particular, given a graph G = (V, E), the VC-dimension of G is defined as the VC-dimension
of (V,N), where N contains each subset of V that can be obtained as the closed neighborhood of
some vertex v ∈ V in G. Our main contribution is an algorithm for computing the VC-dimension of
any graph, whose effectiveness is shown through experiments on various types of practical graphs,
including graphs with millions of vertices. A key aspect of its efficiency resides in the fact that
practical graphs have small VC-dimension, up to 8 in our experiments. As a side-product, we present
several new bounds relating the graph VC-dimension to other classical graph theoretical notions.
We also establish the W [1]-hardness of the graph VC-dimension problem by extending a previous
result for arbitrary set systems.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory
of computation → Parameterized complexity and exact algorithms; Theory of computation →
Algorithm design techniques

Keywords and phrases VC-dimension, graph, algorithm

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.23

Supplementary Material Software: https://gitlab.inria.fr/viennot/graph-vcdim

Funding Guillaume Ducoffe: This work was supported by a grant of the Romanian Ministry of
Research, Innovation and Digitalization, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-
2021-2142, within PNCDI III.
Laurent Viennot: This work was supported by the French National Research Agency (ANR) through
project Tempogral with reference number ANR-22-CE48-0001.

© David Coudert and Mónika Csikós and Guillaume Ducoffe and Laurent Viennot;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Experimental Algorithms (SEA 2024).
Editors: Leo Liberti and Ulrich Meyer; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SEA.2024.23
https://gitlab.inria.fr/viennot/graph-vcdim
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Practical Computation of Graph VC-Dimension

1 Introduction

Since the seminal work of Vapnik and Chervonenkis [35], VC-dimension is one of the basic
quantities describing the complexity of a set system. As such, VC-dimension is the foundation
of many results in mathematics and theoretical computer science: it plays a central role
in uniform sampling guarantees and is often required as an input parameter of algorithms.
For instance, one of the fundamental results in computational learning theory states that a
set system is PAC-learnable if and only if it has bounded VC-dimension [2]. The Sample
Compression Conjecture, which has been called in [6] one of the oldest open problems in
theoretical machine learning, is also related to VC-dimension [17]. VC-dimension has become
a key concept in other fields as well. In computational geometry, bounds on the VC-dimension
of various geometric set systems (e.g., ones induced by half-spaces, balls or axis-parallel
boxes) are essential parameters in methods developed for approximating and processing
geometric data [12, 37]. Indeed, set systems with bounded VC-dimension admit structures
such as small-size ε-nets [20] and ε-approximations [35, 24, 10], matchings and spanning
paths of low crossing numbers [36, 7], colorings with low discrepancy [28] to name a few. We
refer to the survey [27] for more details.

Practical applications of this parameter (e.g. in the design of PAC-learning algorithms),
require bounds on the VC-dimension of the considered set systems. However, it was observed
that the general bounds found in the literature are of limited use in practice [21]. Thus,
the problem of computing the VC-dimension of set systems has attracted some attention.
It is proved to be logNP-hard [31], and W [1]-hard for the natural parameterization by the
VC-dimension [13]. Furthermore, under plausible complexity hypotheses, the VC-dimension
is hard to be approximated within a sub-logarithmic factor in polynomial time [26].

There is a fast growing body of literature demonstrating the strong potential of using
VC-dimension as a graph parameter. In recent studies, researchers have made significant
progress in improving results in extremal and algorithmic graph theory by limiting the
problems to objects with bounded VC-dimension [25, 18, 14, 16, 4, 3], including an EPTAS
for the Maximum Clique problem [3] and subquadratic-time algorithms for diameter
computation [14, 16]. The VC-dimension of a graph was also linked to the complexity of
approximating a minimum-cardinality identifying code on hereditary graph classes [4].

The most commonly used notion of VC-dimension for graphs is defined as the VC-
dimension of its neighbourhood set system (see Section 2 for a formal definition). More
specifically, in this paper we consider the closed neighbourhoods of vertices (i.e., each vertex
is included in the set of its adjacent vertices). However, we could instead consider their
open neighbourhoods. Both notions result in different but comparable values for the VC-
dimension. The algorithmic applications listed in [4, 14, 16] are proved using the set systems
of closed neighbourhoods in a graph, while those listed in [3, 18] are proved using the set
systems of open neighbourhoods. Note that the VC-dimension of other graph-related set
systems has been considered in [8, 9, 16, 22], with different combinatorial and algorithmic
implications. These alternative VC-dimension parameters are not considered in our paper.
However, it is noteworthy that several of these parameters can be lower bounded by the
graph VC-dimension. More generally, it was observed in [5] that every set system H can be
represented as a split graph GH, in such a way that the VC-dimension of H is equal to the
VC-dimension of the closed neighbourhoods of vertices in the stable set of GH. Therefore,
graph VC-dimension is as general as the VC-dimension of arbitrary set systems, if we allow
ourselves to only consider the closed neighbourhoods of a restricted subset of vertices.

Just like for general set systems, the problem of computing the VC-dimension of a

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:3

graph is known to be logNP-hard [22]. However, we are not aware of any previous study
on the parameterized complexity of the problem. Similarly, very few is known about the
VC-dimension of complex networks. The closest such related work would be [11], where the
stronger property of bounded expansion is considered. The VC-dimension of random graphs
has been studied in [1], where for any fixed value d, a density threshold for the property of
having VC-dimension at most d is derived.

Our Contributions.

While developing improved methods for graphs with bounded VC-dimension is a fruitful
direction, it is just as important to provide efficient algorithms and conditions to help
computing or approximating the VC-dimension of the input graph. We address this problem
both from a theoretical and practical point of view.

The main contribution of this paper is a practical algorithm for computing the VC-
dimension of any graph (Algorithm 1). Note that a naive algorithm for this problem would
consider all vertex subsets of size at most the VC-dimension of the input. By contrast, our
algorithm repeatedly updates a lower bound on the VC-dimension, so that most unexplored
vertex subsets below this bound can be discarded. Furthermore, while exploring for larger
shattered subsets, we use our degree-based upper bounds on the VC-dimension in order to
discard at once all vertices of too small degree (at most exponential in the current lower
bound). Similarly, we show that while growing a shattered subset by iteratively adding
new vertices, some branches can be ignored using a simple, but surprisingly powerful, upper
bound on the size of a largest shattered superset (Lemma 2). By doing so, we considerably
reduce the search space, as evidenced by our experiments on some real-life networks. We
implemented a few more tricks, based on a combination of bit masks and partition refinement
techniques, in order to speed up some important routine tasks in the algorithm, such as: the
test of whether a given subset is shattered, that of whether a search branch can be pruned,
and reduction schemes for the graph to be considered. Overall, we were able to compute
the VC-dimension of graphs with millions of nodes in less than 40 minutes, providing the
first practical algorithm for computing graph VC-dimension. We demonstrate the efficiency
of our algorithm on various practical graphs. To the best of our knowledge, this is the first
analysis of the VC-dimension in real networks. Interestingly, we observe that for all graphs
considered in our experiments, the VC-dimension ranges between 3 and 8.

Our next contribution is proving that computing the VC-dimension of a graph is a
W [1]-hard problem for the natural parameterization by the VC-dimension (Theorem 1). For
that, we revisit a previous W [1]-hardness proof for arbitrary set systems [13], which we
combine with some insights on shattered subsets in graphs from [15].

Finally, we note that we obtain a series of new bounds on the VC-dimension with respect
to classical graph parameters, such as maximum degree, degeneracy and matching number.
Some of these parameters are included in the setup of [4] who show that the VC-dimension
of a graph can be functionally upper bounded by any hereditary graph parameter that stays
unbounded on the following graph classes: split graphs, bipartite graphs and co-bipartite
graphs. However, the bounds that can be derived from [4] are rather rough, due to the use
of Ramsey’s theory. By contrast, we give linear and sharp bounds for all the considered
parameters.

Organization. After defining the main notions and notation of this paper in Section 2,
we prove that computing the VC-dimension of graphs is W [1]-hard in Section 3. Then in
Section 4, we summarise our bounds on the graph VC-dimension. In Section 5, we give a

SEA 2024

23:4 Practical Computation of Graph VC-Dimension

new exact algorithm for computing the VC-dimension of graphs and discuss several possible
optimizations. In Section 6, we report our experimental results and discuss the advantages
of the different optimizations methods.

2 Definitions and notation

Throughout this note, we use lowercase letters u, v, x, y, . . . for vertices, uppercase letters
X, Y, Z, . . . for sets of vertices, calligraphic letters as R for collections of sets, and we let
log denote the base 2 logarithm. Given an undirected graph G = (V, E) with |V | = n

vertices and |E| = m edges, let NG[v] denote the closed neighborhood of v defined as
NG[v] = {u ∈ V | uv ∈ E or u = v}. We define the degree deg(v) = |NG[v]| of a vertex as
its closed neighborhood cardinality. We use this unusual convention of counting a vertex in
its own degree for the sake of simplicity when considering closed neighborhood sizes. We
also define the ball BG[v, r] centered at a vertex v and with radius r as the set of nodes at
distance at most r from v. In particular, we have BG[v, 1] = NG[v]. We omit the G subscript
when G is clear from the context.

A set system H = (V, R) (or hypergraph) is defined by a ground set V and a collection R
of subsets of V called ranges. Recall that a set X ⊆ V is said to be shattered by R (or simply
shattered if R is clear from the context) if for every Y ⊆ X there exists a range R ∈ R such
that Y = R ∩ X. For any R ∈ R, the intersection Y = R ∩ X is called the trace of R on X.
The VC-dimension of a graph G, denoted by VCdim(G), is defined as the VC-dimension of
its closed neighborhood set system (V, {NG[v] | v ∈ V }). A subset X ⊆ V is thus shattered
if for every Y ⊆ X there exists a vertex vY such that its trace NG[vY] ∩ X on X equals Y .
When considering such a set system, we say that a vertex v has trace Y on a set X when its
closed neighborhood has trace Y = NG[v] ∩ X.

3 W[1]-hardness

As we have mentioned in the introduction, computing the VC-dimension of graphs is known
to be logNP-hard [22]. We show that it is also W[1]-hard for the natural parameterization
by the VC-dimension by showing the following statement in Appendix A.

▶ Theorem 1. For any graph G and parameter k ≤ |V (G)|, there exists a graph HG such
that G contains a k-clique if and only if the VC-dimension of HG is at least k. Furthermore,
we can construct HG from G in O(k2kn2) time.

4 Simple bounds

The following are upper bounds on the size of shattered subsets in graphs, with respect to
various graph parameters. We emphasize on Lemma 2, which is a cornerstone of our practical
algorithm for computing the VC-dimension of graphs (presented in the next Section 5).

▶ Lemma 2. Consider a shattered set X and Y ⊆ X. Let Y ′ be the set of vertices with trace
Y on X. Any shattered set Z containing X satisfies 2|Z|−|X| ≤ |Y ′|.

Proof. For any subset X ′ ⊆ Z \ X, there must exist a vertex vX′ with trace N [vX′] ∩ Z =
Y ∪ X ′. As vX′ has trace Y on X, it is included in Y ′. All vertices vX′ are pairwise distinct
since they have pairwise distinct traces on Z. Hence, Y ′ has size at least 2|Z\X|. ◀

Setting X = Y = {x} for any vertex x, we have Y ′ = N [x] and obtain the following bound.

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:5

▶ Corollary 3. Any shattered set Z containing a vertex x has size at most ⌊log deg(x)⌋ + 1.

In Appendix B, we additionally relate the VC-dimension of a graph with its degeneracy
k and its matching number ν (recall that a graph G is called k-degenerate if every subgraph
of G contains a vertex with at most k neighbours, and that ν is the size of a maximum
matching in G). We summarize the obtained upper-bounds in the next lemma.

▶ Lemma 4. Let G be a non-empty graph on n vertices with maximum degree ∆, matching
number ν, and degeneracy k, then

VCdim(G) ≤ min {⌊log n⌋, ⌊log ∆⌋ + 1, k + 1, ν + 1} .

The following lemma allows to restrict the search of a shattered set containing a given
node x to its ball B[x, 2] of radius 2.

▶ Lemma 5. For any shattered set X and x ∈ X, we have X ⊆ B[x, 2].

Proof. Since X is shattered, for any vertex y ∈ X \{x}, there exists a vertex v ∈ V such that
N [v] ∩ X = {x, y}. That is, v is a common neighbor of x and y and so distG(x, y) ≤ 2. ◀

5 Algorithm

The exact algorithm is given in Algorithm 1. Apart from the graph, it receives a lower bound
lb on its VC-dimension. Alternatively, one can start the algorithm with input value lb = 0.
In Section 5.2, we describe a way to obtain a better starting value for lb.

5.1 Outline of the method
Given a graph G and a lower bound lb of its VC-dimension, our algorithm consists in
exploring all possible shattered sets of size at least lb + 1 according to Algorithm 1. If one is
found, lb is updated and the search is continued on larger sets. When no shattered set of
size lb + 1 is found, we conclude that lb is equal to the VC-dimension. The most technical
part—checking for shattered supersets—is contained in the function ExploreShattered
(see Algorithm 2). We encode a subset Y ⊂ X = {x1, . . . , xk} by the integer with binary
representation y = yk · · · y1 where yi = 1 if xi ∈ Y and yi = 0 otherwise. The trace N [v] ∩ X

of each vertex v is therefore stored in a mask M [v] which is updated as we visit subsets X of
H: the ith bit of M [v] indicates whether the ith vertex of X is in N [v].

Algorithm 1 VCdimComputation
(
G, n, lb

)
Input: A graph G = (V, E) with n = |V | vertices, lower bound lb on VCdim(G)
Output: The VC-dimension of G

1 Let H be an array containing all vertices of degree at least 2lb

2 Sort H (optional). // We consider 3 different ways of sorting, see Section 5.3
3 Initialize a mask M [v]← 0 for all v ∈ H. // Trace of N [v] on X = ∅
4 Initialize T = [T [0]]← [n]

// T [y] counts the number of vertices v ∈ V with trace M [v] = y on X = ∅
5 For i = 1 to |H| do
6 lb← ExploreShattered(H, i, ∅, T, lb)

7 Return lb

To make the algorithm more efficient, we incorporated the following key ideas:

SEA 2024

23:6 Practical Computation of Graph VC-Dimension

Algorithm 2 ExploreShattered
(
H, i, X, T, lb

)
1 Set x← H[i], s← |X ∪ {x}|, and m← 2s−1. // m is the bit mask for x

2 T ′ ← TraceCountAdd
(
T, x, m

)
// T ′[y] = # vertices with trace y on X ∪ {x}

3 prune← False
4 For y = 0 to 2s − 1 do
5 If T ′[y] < 2lb+1−s then prune← True. // by Lemma 2

6 If not prune then
7 For v ∈ NG[x] do
8 M [v]←M [v] + m // Update M(v) to be the trace of N [v] on X ∪ {x}
9 If s > lb then lb← s // X ∪ {x} is shattered

10 For j = i + 1 to |H| do
11 lb← ExploreShattered(H, j, X ∪ {x}, T ′, lb)
12 For v ∈ NG[x] do M [v]←M [v]−m // Restore the trace of N [v] on X

13 Return lb

14 Function TraceCountAdd
(
T, x, m

)
15 Let T ′ be a copy of T resized to 2s and padded with zeros.
16 For v ∈ NG[x] do
17 Consider y ←M [v] // The trace of N [v] on X

18 T ′[y]← T ′[y]− 1
19 T ′[y + m]← T ′[y] + 1
20 Return T ′

According to Corollary 3, we can restrict the search to the set H of vertices with degree
2lb at least.

We fix an ordering ≺ of H and scan subsets of H in a depth first search manner.
More precisely, ExploreShattered performs a DFS of the inclusion graph of subsets
of H by following arcs X → Z for X, Z ⊆ H such that Z = X ∪ {z} and x ≺ z for all
x ∈ X. Starting from the empty set, any set X = {x1, . . . , xk} with x1 ≺ · · · ≺ xk is thus
reachable through ∅ → {x1} → {x1, x2} → · · · → X.

For each visited set X, we compute a table T counting for each Y ⊆ X the number of
vertices v with trace N [v] ∩ X = Y . If T [Y] < 2lb+1−|X| for some Y , then Lemma 2
implies that there exists no shattered set Z ⊇ X of size lb + 1 or more, so we do not
explore the supersets of X. Note that this test is not satisfied when X is not shattered
as we then have T [Y] = 0 for some Y ⊆ X. The argument X of ExploreShattered is
thus always a shattered set.

When considering Z = X ∪ {x}, the table T ′ for Z can be obtained from T in time
O(|T | + ∆) = O(2d + ∆) where ∆ is the maximum degree in G and d is its VC-dimension.

The overall worst case complexity of the algorithm is thus O(nd(2d + ∆)) as we visit
only shattered sets. Moreover, Corollary 3 implies 2d = O(∆) and the complexity is thus
O(nd∆). This pessimistic bound assumes that a constant fraction of sets of size d are
shattered. Empirically we observed much better running times, as reported in Section 6 with
the evaluation on practical graphs. Section 5.3 describes several optimizations, including
how to sort H.

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:7

5.2 Lower-bound computation

We compute a lower bound lb by a method similar to VCdimComputation with lb = 0 (thus
H = V). We make the search faster by only performing a partial scan of subsets of H. In
order to find large shattered sets, we sort H by non-increasing degrees. We restrict the search
in two ways: we fix a maximum number maxvisits = 64 of times a vertex x can be added to
the current shattered set; we also restrict the for loop of Line 10 of ExploreShattered
to the first maxvisits/2 elements. As each vertex is visited a constant number of times (at
most maxvisits), this modified version takes linear time.

5.3 Optimizations

Vertex ordering.

We have considered the following options for sorting the set H of high degree vertices:
non-increasing degrees (D−),
non-decreasing degrees (D+),
k-core ordering (K): an ordering of G|H , the subgraph restricted to H, obtained by
repeatedly removing a vertex with lowest degree, vertices removed first are ordered first,
random ordering (R).

The intuition for choosing non-increasing degrees follows that of the lower bound computation:
higher degree vertices tend to participate to larger shattered set and exploring them first
can improve the lower bound earlier, allowing to restrict the rest of the search more severely
thanks to Lemma 2. Conversely, if we start with a good enough lower bound, lower degree
vertices tend to participate to smaller shattered sets and the exploration from these vertices
tends to be faster. Exploring them first then speeds up the exploration from high degree
vertices as we do not need to consider adding already scanned vertices anymore. Using a
k-core ordering follows a similar intuition with the refinement of taking into account the
degree after removing previous vertices rather than the degree in the full graph. Using a
random ordering seems a basic choice for comparison.

Ball restriction.

Lemma 5 implies that when starting an exploration from x = H[i] (Line 6 of VCdimCompu-
tation) we can restrict the search to consider only vertices in B[x, 2] ∩ {H[i], H[i + 1], . . .}.

Graph reduction.

As we focus on shattered sets included in H, we can restrict the graph while preserving all
possible traces on H. For that purpose, for each possible trace Y ⊆ H which can be obtained
as H ∩ N [v] for v ∈ V , we keep at most one vertex v ∈ V \ H with trace N [v] ∩ H = Y .
Such a selection can be obtained in linear time using partition refinement [30, 19] as follows.
Starting from the partition P = {V } we iteratively refine it by sets N [x] for x ∈ H: each
refinement step consists in splitting each part P ∈ P into P ∩ N [X] and P \ N [X] (if one of
the two sets is empty, P remains unchanged). Each refinement step clearly maintains the
invariant that all vertices in a part have the same trace on the set of vertices of H processed
so far. At the end of the process, all vertices in a part must have the same trace on H. We
thus keep one vertex per final part not intersecting H and all vertices in H to obtain a set
V ′ ⊇ H of vertices providing the same traces on H as V and proceed on G|V ′ instead of G.

SEA 2024

23:8 Practical Computation of Graph VC-Dimension

Table 1 The graphs we use with their main parameters and the time (in seconds) required by
our reference implementation KBG to compute their VC-dimension.

Graph #nodes #edges max.deg. VC-dim d time (s)

BIO-MV-Physical-3.5 21 866 68 123 1 117 5 0.11
BIO-SYS-Aff-Cap-MS-3.5 38 926 299 855 2 193 7 4.41
BIO-SYS-Aff-Cap-RNA-3.5 12 716 40 541 3 571 7 0.03
dip20170205 27 029 73 762 289 5 0.14
oregon2-010331 10 900 31 180 2 343 6 0.20
CAIDA-as-20130601 44 611 151 434 3 962 7 11.50
DIMES-201204 25 367 75 004 3 781 7 0.16
as-skitter 1 696 415 11 095 298 35 455 8 2 116.90
p2p-Gnutella09 8 114 26 013 102 5 0.01
gnutella31 62 586 147 892 95 4 0.29
notreDame 325 729 1 090 108 10 721 6 2.94
y-BerkStan 685 231 6 649 470 84 230 7 11.44
ca-HepPh 12 008 118 489 491 5 46.53
com-dblp 317 080 1 049 866 343 5 2.30
epinions1 75 888 405 740 3 044 7 58.69
facebook-combined 4 039 88 234 1 045 6 8.15
twitter-combined 81 306 1 342 296 3 383 7 456.22
t.CAL 1 890 816 2 315 222 7 3 4.56
t.FLA 1 070 377 1 343 951 8 3 2.53
buddha 543 652 1 631 574 17 4 3.21
froz 754 197 2 902 525 8 3 4.70
z-alue7065 34 047 54 841 4 3 0.03
grid300-10 90 601 162 535 4 3 0.21
xgrid500-10 251 001 450 766 4 3 0.61
powerlaw2.5 1 000 000 1 916 356 9 447 6 3.79

6 Experiments

6.1 Dataset

We evaluate the performance of our algorithm on various types of practical graphs. We use
graphs from the BioGRID interaction database (BIO-*) [29]; a protein interactions network
(dip20170205) [32]; and graphs of the autonomous systems from the Internet (oregon2,
CAIDA_as and DIMES) [23, 34, 33]. We also test computer networks (Gnutella, Skitter),
web graphs (notreDame and BerkStan), social networks (Epinions, Facebook, Twitter),
co-author graphs (ca-HepPh, dblp), road networks (t.CAL, t.FLA), a 3D triangular mesh
(buddha), a graph from a computer game (FrozenSea), and grid-like graphs from VLSI
applications (z-alue7065). The data is available from snap.stanford.edu, webgraph.di.
unimi.it, www.dis.uniroma1.it/challenge9, graphics.stanford.edu, steinlib.zib.
de, and movingai.com. Furthermore, we use synthetic inputs: grid300-10 and grid500-10
are square grids with respective sizes 301 × 301, and 501 × 501 where 10% of the edges
were randomly deleted; and powerlaw2.5 is a random graph generated according to the
configuration model with a degree sequence following a power law with exponent 2.5.

All experiments were performed on a cluster of 20 nodes equipped with two Cacade Lake

snap.stanford.edu
webgraph.di.unimi.it
webgraph.di.unimi.it
www.dis.uniroma1.it/challenge9
graphics.stanford.edu
steinlib.zib.de
steinlib.zib.de
movingai.com

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:9

10k 1M 100M 10B

0.01

0.1

1

10

100

1000

10k
VC-dim

8
7
6
5
4
3

Figure 1 Computation time t in seconds versus the estimated number x of tentative shattered
sets considered by KBG: each network in the dataset is represented by a disk with coordinates
(x, t), whose color indicates the VC-dimension d of the network, while the size is proportional to the
logarithm of the number of high degree nodes.

Intel Xeon 5218 16 cores processors at 2.4GHz and 192GB of memory each. Sixteen processes
were run in parallel on four nodes of the cluster. Our computation times are thus pessimistic
compared to running each process on a fully reserved node (for example, the computation of
the VC-dimension of the twitter graph of our dataset takes 431s on a fully reserved node
compared to 456s in our experiment even though we report user times). The code is available
at gitlab.inria.fr/viennot/graph-vcdim.

6.2 Graphs and reference time

We first present our dataset graphs in Table 1 together with their VC-dimension and time
required to compute it with our reference implementation KBG: which uses k-core ordering
(K), ball restriction (B) and graph reduction (G). We have chosen KBG as our reference
choice of optimizations as it provides the minimum sum of running times over all graphs of
our dataset. We list also their size in terms of number of nodes (not counting isolated nodes)
and number of edges (duplicate edges are removed).

We observe that the VC-dimension of all graphs in the dataset is rather small: at most 8,
even for graphs with millions of nodes and over 10M edges (M stands for million). Moreover,
its computation with our KBG implementation takes at most a few seconds for most of the
graphs, and less than a few minutes for all but one: as-skitter for which it takes around 35
minutes. Memory usage (not reported here) grows with the input graph size up to roughly
600 megabytes for as-skitter. Not surprisingly, this most difficult graph is both the largest in
terms of number of edges and the most complex in terms of VC-dimension. We analyze the
dependency of the computation time with respect to some graph parameters in Section 6.3.

SEA 2024

https://gitlab.inria.fr/viennot/graph-vcdim

23:10 Practical Computation of Graph VC-Dimension

Table 2 VC-dimension d, counts of shattered sets and high degree nodes, average ball size.

Graph d all deg ≥ 2d Lem.2 Lem.2G #deg ≥ 2d KBG #deg ≥ 2lb bsize

BIO-MV-Physical-3.5 5 6 970 780 1 618 308 4 471 4 242 582 4 242 582 118
BIO-SYS-Aff-Cap-MS-3.5 7 – 419 882 850 133 927 133 546 455 133 546 455 152
BIO-SYS-Aff-Cap-RNA-3.5 7 1 552 654 200 9 438 1 388 1 246 19 1 292 152 9
dip20170205 5 9 050 178 2 823 068 14 503 14 227 586 14 227 586 72
oregon2-010331 6 18 763 142 1 774 582 2 932 2 610 105 21 750 258 118
CAIDA-as-20130601 7 – 134 557 021 179 232 174 320 168 441 741 421 217
DIMES-201204 7 345 796 843 1 982 414 4 206 3 870 67 3 870 67 33
as-skitter 8 – – 6 671 019 6 658 159 4 182 6 658 159 4 182 907
p2p-Gnutella09 5 1 367 927 39 096 433 420 58 420 58 29
gnutella31 4 1 781 293 131 652 3 958 2 135 1 938 19 417 16 089 47
notreDame 6 294 870 046 46 413 353 5 022 2 883 2 063 26 733 18 807 507
y-BerkStan 7 – 33 179 823 108 641 90 394 1 540 90 394 1 540 395
ca-HepPh 5 150 884 864 137 719 903 1 046 942 1 037 751 1 529 1 037 751 1 529 363
com-dblp 5 17 874 027 2 489 073 24 748 14 329 4 280 65 024 20 566 117
epinions1 7 – – 1 026 033 1 025 863 1 162 1 025 863 1 162 570
facebook-combined 6 722 273 307 568 585 300 389 816 389 471 882 389 471 882 162
twitter-combined 7 – – 1 709 219 1 707 213 3 283 2 562 770 10 483 950
t.CAL 3 8 107 636 12 12 0 0 0 0 0
t.FLA 3 4 805 712 6 6 0 0 0 0 0
buddha 4 7 958 071 21 17 0 0 270 936 119 239 4
froz 3 1 7402 814 16 370 600 2 033 860 2 026 837 691 850 2 026 837 691 850 12
z-alue7065 3 250 178 0 0 0 0 0 0 0
grid300-10 3 800 788 0 0 0 0 0 0 0
xgrid500-10 3 2 222 193 0 0 0 0 0 0 0
powerlaw2.5 6 236 286 923 31 023 430 4 653 2 674 886 2 674 886 314

To appreciate these running times, recall that our algorithm for computing the VC-
dimension consists in first computing a lower-bound lb, then identifying the set H of high
degree nodes, that is those with degree at least 2lb, and then ordering this set for exploring
shattered sets included in H. Figure 1 shows that running times are basically proportional
to the number x of shattered sets considered by KBG, which is estimated as follows. For
each visited shattered set X = {v1, . . . , vk} with v1 ≺ · · · ≺ vk, our algorithm tries to add
high degree nodes of B[v1, 2] coming after vk in the ordering ≺ used for H. We can thus
estimate x as the product of the number s of visited shattered sets multiplied by half of the
average ball size bsize = 1

|H|
∑

v∈H ∥B[v, 2] ∩ H∥. These numbers are reported in Table 2.
We see in Figure 1 that most networks are close to the black line that corresponds to a rate
of 2 millions tentative shattered sets per second. For low values of x five networks appear
significantly above the line: p2p-gnutella09, BIO-SYS-Aff-Cap-RNA-3.5, DIMES-201204,
powerlaw2.5 and buddha (from left to right). This is due to the overhead of reading the
input file, computing the lower-bound, the k-core ordering, and the graph reduction which
appears to be higher than the time for exploring shattered sets in these networks (we get
comparable times when running all these phases and stopping before exploring).

6.3 Analysis: shattered sets and high degree nodes

The running time of our computation is mostly governed by the number of high degree
nodes and the number of shattered sets explored, we thus present a detailed analysis of
them. Table 2 lists several measures we could perform as follows. By removing the pruning
according to Lemma 2, our algorithm explores all shattered sets. By setting an initial
lower-bound of 0, we first tried to compute all shattered sets and report their number in
column “all”. Note that this computation was not doable within our timeout of 6 hours for six
graphs. Unsurprisingly, bigger values are observed for larger VC-dimension. We then tried
to compute all shattered sets included in the set H ′ of nodes with degree at least 2d where

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:11

100 10k 1M 100M

10

100

1000

10k

100k

1M

10M

100M

1B VC-dim
8
7
6
5
4
3

Figure 2 The number y of visited shattered sets versus the number x of shattered sets in H ′: each
network in the dataset is represented by a disk with coordinates (x, y), whose color indicates the
VC-dimension d of the network, while its size is proportional to the logarithm of |H ′| (H ′ denotes
the set of nodes with degree 2d at least).

d is the VC-dimension of the graph. Again this computation was out of reach within our
time limit for three graphs. We then use KB with d as lower-bound to obtain the number of
visited shattered sets in H ′ according to Lemma 2 in column “Lem.2”. We obtain similarly
column “Lem.2G” using KBG. Column “KBG” is obtained using KBG with its heuristic
lower-bound (instead of the exact value d). We also report the size of H ′ and H (columns
“#deg ≥ 2d” and “#deg ≥ 2lb” respectively), and average ball size bsize in the last column.

We observe that restricting to H ′ can reduce the number of shattered sets by a huge
factor (e.g. BIO-SYS-Aff-Cap-RNA-3.5). Note that H ′ can be empty in graphs with low
maximum degree such as grids, explaining the zeros in the table. In general, Lemma 2 allows
to further reduce the number y of shattered sets to explore as illustrated by Figure 2 (column
“deg ≥ 2d” versus “Lem.2” of Table 2). For networks with more than 10k shattered sets in
H ′, we observe a reduction factor varying from roughly 10 for networks with VC-dimension
3-4, to roughly 100 for networks with VC-dimension 5, and from 1000 to 10k for networks
with VC-dimension 6-7 except for BIO-SYS-Aff-Cap-RNA-3.5 for which the number x of
shattered sets in H ′ was already quite low. We could not compute the value x for our only
network of VC-dimension 8 within our 6 hours limit. Overall, this shows the efficiency of our
approach by restricting to high degree nodes and pruning the search by Lemma 2.

6.4 Lower and upper bounds

As detailed in Appendix C.1, the lower bounds we obtain with our heuristic are mostly equal
to the true VC-dimension or just one less. The upper bounds presented in Lemma 4, except

SEA 2024

23:12 Practical Computation of Graph VC-Dimension

Table 3 Comparing different optimization options of our algorithm with our reference selection
(KBG). A dash (–) indicates that the timeout of 6 hours was reached.

Graph D−BG D+BG KBG RBG KG KB K

BIO-MV-Physical-3.5 0.22 0.09 0.11 0.22 0.17 0.13 0.19
BIO-SYS-Aff-Cap-MS-3.5 18.09 3.06 4.41 5.69 6.50 4.58 6.86
BIO-SYS-Aff-Cap-RNA-3.5 0.03 0.04 0.03 0.06 0.04 0.04 0.06
dip20170205 0.31 0.12 0.14 0.18 0.31 0.17 0.35
oregon2-010331 0.54 0.55 0.20 0.29 0.20 0.25 0.25
CAIDA-as-20130601 11.76 17.26 11.50 6.76 11.85 14.10 14.06
DIMES-201204 0.15 0.08 0.16 0.11 0.09 0.13 0.13
as-skitter 13 830.13 3 673.65 2 116.90 4 022.75 8 892.87 2 358.56 10 102.42
p2p-Gnutella09 0.02 0.01 0.01 0.03 0.02 0.02 0.01
gnutella31 0.17 0.30 0.29 0.32 15.20 0.30 16.77
notreDame 1.87 14.36 2.94 2.85 55.95 4.41 122.59
y-BerkStan 11.83 11.32 11.44 8.33 56.86 38.47 521.76
ca-HepPh 138.93 33.54 46.53 61.00 47.03 47.82 48.18
com-dblp 1.79 2.23 2.30 1.71 82.82 2.68 170.05
epinions1 511.94 31.08 58.69 144.99 58.69 63.67 63.07
facebook-combined 21.37 10.30 8.15 12.09 44.56 8.24 45.04
twitter-combined 1 079.24 3 132.27 456.22 397.94 1 532.12 473.12 1 549.07
t.CAL 4.59 4.41 4.56 4.45 4.56 4.85 4.87
t.FLA 2.42 2.35 2.53 2.47 2.46 2.62 2.58
buddha 2.99 2.92 3.21 3.01 2 606.40 3.22 4 525.09
froz 4.39 4.40 4.70 6.44 – 4.45 –
z-alue7065 0.03 0.03 0.03 0.04 0.03 0.04 0.03
grid300-10 0.22 0.23 0.21 0.21 0.21 0.22 0.21
xgrid500-10 0.61 0.59 0.61 0.63 0.62 0.62 0.65
powerlaw2.5 4.06 3.59 3.79 3.77 3.66 7.88 8.90

for the matching number, are analyzed in Appendix C.2 and are often much larger than the
true VC-dimension except for grid-like graphs.

6.5 Optimizations

We now compare our reference implementation with other variants of our algorithm obtained
by changing the ordering of the vertices (D−, D+, K, R), using ball restriction (B) or not,
and using graph restriction (G) or not (see Table 3).

Concerning the ordering of the nodes used for scanning shattered sets, we first note
that non-decreasing degrees (D+) is almost always faster than non-increasing degrees (D−).
Notable exceptions are notreDame and twitter-combined where our initial lower bounds are
VCdim(notreDame) − 2 and VCdim(twitter-combined) − 1 respectively. By observing our
traces of execution, we explain it by the fact that the non-increasing order allows to find
faster a better lower-bound, which then speeds up the rest of the computation. When the
starting lower-bound was indeed exact, non-decreasing degrees is always faster or at least
very close to non-increasing degrees. Our intuition is that the number of tentative shattered
sets inspected is lower in that case. Indeed, for shattered sets constructed from the first
nodes of the ordering, we have to consider all possible remaining nodes (that are in their ball
of radius two) and try to construct a tentative shattered set by adding each of them. Putting
nodes with lower degree first seem to result in a better balance with respect to the number
of tentative shattered sets tested for being shattered. In that respect, the k-core ordering
(K) seems to work slightly better since it considers the remaining degrees after removing the

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:13

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6 128
100
64
45
32

V
C
-d
im
en
si
on

0 0.05 0.1 0.15 0.2 0.25 0.3

0

1

2

3

4

5

6 400
256
128
100
64
45
32

V
C
-d
im
en
si
on

Figure 3 Top: the average VC-dimension of Gn,p as a function of p for n = 32, 45, 64, 100, 128.
Bottom: a zoom on values p ∈ [0, 0.3] including additional curves for n = 256, 400.

first nodes rather than degree in the full graph. We note however that a random ordering
(R) gives overall good results and RBG can even outperform KBG when our lower-bound
is not exact, similarly as D−BG can outperform D+BG. This is in particular the case for
twitter-combined. Overall there is no clearly better strategy for the ordering and both k-core
ordering and random ordering seem legitimate choices.

Recall that the ball optimization (B) consists in restricting the nodes added to a shattered
set X to those that are in the ball of radius two centered at the first node of X. It also
allows to reduce the number of tentative shattered sets tested and is almost always beneficial.
It appears to be mandatory on graphs with very large number of high degree nodes such as
froz (the number of high degree nodes is analyzed in Section 6.3).

The graph reduction optimization (G) is not very costly in terms of computation time

SEA 2024

23:14 Practical Computation of Graph VC-Dimension

1 1.5 2 2.5 3 3.5 4

2

3

4

5

6

7

8
1000000
300000
30000
4000
2000
1000
512
256
128
64
32V

C
-d
im
en
si
on

Figure 4 Average VC-dimension of a power-law random graph with respect to the exponent β of
the law for various numbers n of nodes. (Curves for large n are truncated for low values of β.)

(KBG is always almost as good as KB) and gives a significant improvement on difficult
graphs such as as-skitter and y-BerkStan.

6.6 VC-dimension of random graphs
We computed the average VC-dimension of various Erdős-Rényi random graphs Gn,p (where
each edge appears independently with probability p) with up to n = 400 nodes and compared
them to [1] which proved a threshold of p = n−11/20 = n−0.55 above which the VC-dimension
d of Gn,p tends to be greater than 3, and similarly p = n−21/55 ≈ n−0.38 for d > 4, and
p = n−7/24 ≈ n−0.29 for d > 5. On the one hand, our results confirm the p = n−0.55 and
p = n−0.38 thresholds which appear to be rather sharp already for n = 100 or n = 256. On
the other hand, observing the p = n−0.29 threshold seems to require size n greater than 400
(see Figure 3).

Figure 4 shows the VC-dimension of various power-law random graphs for n ∈ {32, 64, 128,

256, 512, 1 000, 2 000, 4 000, 30 000, 300 000, 1 000 000} nodes and exponent β ∈ [1, 4]. A graph
with n nodes and exponent β is obtained by generating a sequence of degrees following a
power-law with parameter β (deg(u) gets value d with probability proportional to 1/dβ) and
generating a graph according to the configuration model (we generate deg(u) half edges for
each node u and connect half edges according to a random permutation). For each pair n, β,
we have generated 20 random graphs and computed the average VC-dimension of them. Our
curves seem to indicate a threshold value near β = 3 below which the VC-dimension tends to
infinity as n grows while the VC-dimension seems to remain constant above (at most three
for large n).

7 Conclusion

A first conclusion is that there is room for improvement with respect to the quick estimation
of the VC-dimension, especially concerning good upper bounds. Our work can be directly

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:15

applied in the setups, where the hyperedges are induced by the open neighborhoods or where
only the neighborhoods of a subset of vertices are considered as hyperedges. In future works,
besides studying the VC-dimension of power-law random graphs as mentioned above, we
will consider extending our algorithm to the practical computation of other VC-dimension
parameters on graphs (e.g., the distance VC-dimension, see [8]), and of the VC-dimension of
arbitrary set systems where the ranges are given explicitly.

References

1 Martin Anthony, Graham Brightwell, and Colin Cooper. The Vapnik-Chervonenkis dimension
of a random graph. Discrete Mathematics, 138(1-3):43–56, 1995. doi:10.1016/0012-365X(94)
00187-N.

2 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.
doi:10.1145/76359.76371.

3 Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos,
Eun Jung Kim, Paweł Rzażewski, Florian Sikora, and Stéphan Thomassé. EPTAS and
subexponential algorithm for maximum clique on disk and unit ball graphs. Journal of the
ACM (JACM), 68(2):1–38, 2021. doi:10.1145/3433160.

4 Nicolas Bousquet, Aurélie Lagoutte, Zhentao Li, Aline Parreau, and Stéphan Thomassé.
Identifying codes in hereditary classes of graphs and VC-dimension. SIAM Journal on Discrete
Mathematics, 29(4):2047–2064, 2015. doi:10.1137/14097879.

5 Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès.
Sample compression schemes for balls in graphs. SIAM Journal on Discrete Mathematics,
37(4):2585–2616, 2023.

6 Jérémie Chalopin, Victor Chepoi, Shay Moran, and Manfred K. Warmuth. Unlabeled sample
compression schemes and corner peelings for ample and maximum classes. Journal of Computer
and System Sciences, 127:1–28, 2022. doi:10.1016/j.jcss.2022.01.003.

7 Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-
dimension. Discrete & Computational Geometry, 4:467–489, 1989. doi:10.1007/BF02187743.

8 Victor Chepoi, Bertrand Estellon, and Yann Vaxes. Covering planar graphs with a fixed
number of balls. Discrete & Computational Geometry, 37:237–244, 2007. doi:10.1007/
s00454-006-1260-0.

9 Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. On density of subgraphs of Cartesian
products. Journal of Graph Theory, 93(1):64–87, 2020. doi:10.1002/jgt.22469.

10 Mónika Csikós and Nabil H. Mustafa. Optimal approximations made easy. Information
Processing Letters, 176:106250, 2022. doi:10.1016/j.ipl.2022.106250.

11 Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath Sikdar,
and Blair D. Sullivan. Structural sparsity of complex networks: Bounded expansion in random
models and real-world graphs. Journal of Computer and System Sciences, 105:199–241, 2019.
doi:10.1016/j.jcss.2019.05.004.

12 Christian J. J. Despres. The Vapnik-Chervonenkis dimension of cubes in Rd, 2017. arXiv:
1412.6612.

13 Rodney G. Downey, Patricia A. Evans, and Michael R. Fellows. Parameterized learning
complexity. In Proceedings of the sixth annual conference on Computational learning theory,
pages 51–57, 1993.

14 Guillaume Ducoffe. On computing the average distance for some chordal-like graphs. In 46th
International Symposium on Mathematical Foundations of Computer Science (MFCS), 2021.

15 Guillaume Ducoffe. The diameter of AT-free graphs. Journal of Graph Theory, 99(4):594–614,
2022. doi:10.1002/jgt.22754.

SEA 2024

https://doi.org/10.1016/0012-365X(94)00187-N
https://doi.org/10.1016/0012-365X(94)00187-N
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/3433160
https://doi.org/10.1137/14097879
https://doi.org/10.1016/j.jcss.2022.01.003
https://doi.org/10.1007/BF02187743
https://doi.org/10.1007/s00454-006-1260-0
https://doi.org/10.1007/s00454-006-1260-0
https://doi.org/10.1002/jgt.22469
https://doi.org/10.1016/j.ipl.2022.106250
https://doi.org/10.1016/j.jcss.2019.05.004
http://arxiv.org/abs/1412.6612
http://arxiv.org/abs/1412.6612
https://doi.org/10.1002/jgt.22754

23:16 Practical Computation of Graph VC-Dimension

16 Guillaume Ducoffe, Michel Habib, and Laurent Viennot. Diameter, eccentricities and distance
oracle computations on H-minor free graphs and graphs of bounded (distance) Vapnik-
Chervonenkis dimension. SIAM Journal on Computing, 51(5):1506–1534, 2022. doi:10.1137/
20M136551.

17 Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. Machine learning, 21:269–304, 1995. doi:10.1023/A:1022660318680.

18 Jacob Fox, János Pach, and Andrew Suk. Bounded VC-dimension implies the Schur-Erdős
conjecture. Combinatorica, 41(6):803–813, 2021. doi:10.1007/s00493-021-4530-9.

19 Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-BFS and
partition refinement, with applications to transitive orientation, interval graph recogni-
tion and consecutive ones testing. Theoretical Computer Science, 234(1-2):59–84, 2000.
doi:10.1016/S0304-3975(97)00241-7.

20 David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. In Proceedings of the
second annual symposium on Computational geometry, pages 61–71, 1986.

21 Sean B. Holden and Mahesan Niranjan. On the practical applicability of VC-dimension bounds.
Neural Computation, 7(6):1265–1288, 1995. doi:10.1162/neco.1995.7.6.1265.

22 Evangelos Kranakis, Danny Krizanc, Berthold Ruf, Jorge Urrutia, and Gerhard Woeginger. The
VC-dimension of set systems defined by graphs. Discrete Applied Mathematics, 77(3):237–257,
1997. doi:10.1016/S0166-218X(96)00137-0.

23 Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM transactions on Knowledge Discovery from Data - TKDD, 1(1):2–42,
2007. doi:10.1145/1217299.1217301.

24 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved Bounds on the Sample Complexity
of Learning. Journal of Computer and System Sciences, 62(3):516–527, 2001. doi:10.1006/
jcss.2000.1741.

25 Tomasz Łuczak and Stéphan Thomassé. Coloring dense graphs via VC-dimension. arXiv
preprint arXiv:1007.1670, 2010.

26 Pasin Manurangsi and Aviad Rubinstein. Inapproximability of VC-dimension and Littlestone’s
dimension. In Conference on Learning Theory, pages 1432–1460. PMLR, 2017.

27 Jiří Matoušek. Geometric set systems. In European Congress of Mathematics: Budapest, July
22–26, 1996 Volume II, pages 1–27. Springer, 1998.

28 Jiří Matoušek. VC-Dimension and Discrepancy, pages 137–169. Springer Berlin Heidelberg,
1999. doi:10.1007/978-3-642-03942-3_5.

29 Rose Oughtred, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher, Christie
Chang, Nadine Kolas, Lara O’Donnell, Genie Leung, Rochelle McAdam, et al. The BioGRID
interaction database: 2019 update. Nucleic acids research, 47(D1):D529–D541, 2019.

30 Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973–989, 1987. doi:10.1137/0216062.

31 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the VC dimension. Journal of Computer and System Sciences, 53(2):161–170,
1996. doi:10.1006/jcss.1996.0058.

32 Lukasz Salwinski, Christopher S. Miller, Adam J. Smith, Frank K. Pettit, James U. Bowie, and
David Eisenberg. The database of interacting proteins: 2004 update. Nucleic acids research,
32(suppl_1):D449–D451, 2004.

33 Yuval Shavitt and Eran Shir. DIMES: Let the internet measure itself. ACM SIGCOMM Com-
puter Communication Review, 35(5):71–74, October 2005. doi:10.1145/1096536.1096546.

34 The Cooperative Association for Internet Data Analysis (CAIDA). The CAIDA AS relation-
ships dataset. http://www.caida.org/data/active/as-relationships/, 2013.

35 Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–
280, 1971. doi:10.1137/1116025.

https://doi.org/10.1137/20M136551
https://doi.org/10.1137/20M136551
https://doi.org/10.1023/A:1022660318680
https://doi.org/10.1007/s00493-021-4530-9
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1162/neco.1995.7.6.1265
https://doi.org/10.1016/S0166-218X(96)00137-0
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1006/jcss.2000.1741
https://doi.org/10.1006/jcss.2000.1741
https://doi.org/10.1007/978-3-642-03942-3_5
https://doi.org/10.1137/0216062
https://doi.org/10.1006/jcss.1996.0058
https://doi.org/10.1145/1096536.1096546
http://www.caida.org/data/active/as-relationships/
https://doi.org/10.1137/1116025

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:17

36 Emo Welzl. Partition trees for triangle counting and other range searching problems. In
Proceedings of the fourth annual symposium on Computational geometry, pages 23–33, 1988.

37 Roberta S Wenocur and Richard M Dudley. Some special vapnik-chervonenkis classes. Discrete
Mathematics, 33(3):313–318, 1981. doi:10.1016/0012-365X(81)90274-0.

A Proof of Theorem 1

Proof. Our starting point is the FPT-reduction of Downey et al. [13] who showed that
computing the VC-dimension of general set systems is W[1]-hard by the following reduction
from k-clique detection.

▶ Theorem 6 (Theorem 3 in [13, Sec. 5]). Let G = (V, E) be a graph and k ≤ |V | be a
parameter. Then G contains a k-clique if and only if there is a shattered k-subset in the set
system HG = (X, R), where X = V × {1, 2, . . . , k} and R = R0 ∪ R1 ∪ R2 ∪ R3 with

R0 = {∅};
R1 = {{(v, i)} | v ∈ V, 1 ≤ i ≤ k};
R2 = {{(u, i), (v, j)} | uv ∈ E, 1 ≤ i, j ≤ k};
R3 = {{(v, i) | v ∈ V, i ∈ S} | S ⊆ {1, 2, . . . , k} and |S| ≥ 3}.

Let HG = (X, R) be defined as in Theorem 6. Note that the cumulative cardinalities of all
sets in R sum up to O(kn + k2m + k2kn) = O(k2kn2).
We construct a graph HG from HG as follows:

V (HG) = X ∪ R;
for every x ∈ X and R ∈ R such that x ∈ R, add the edge {x, R} to E(HG);
if k ≥ 3, for every distinct x, y ∈ X add the edge {x, y} to E(HG).

Note that the cost of computing HG is that of computing HG, with an additional cost in
O(|X|2) = O(k2n2) if k ≥ 3. It is easy to see that if Y ⊆ X is shattered in HG, then it is
also shattered by the closed neighborhoods in HG. Thus, Theorem 6 implies that if G has a
k-clique, then the VC-dimension of HG, and so the VC-dimension of HG, is at least k.

It remains to show that if G has no k-clique (or equivalently, the VC-dimension of HG is
strictly less than k), then the VC-dimension of HG is at most k − 1.

If k = 0, then G must be an empty graph. Then, R = R0. It implies that HG is reduced
to one vertex, and so, its VC-dimension equals 0.

If k = 1, then G is a stable set which implies R2 = ∅, and we also have R3 = ∅. In
particular, R = R0 ∪ R1. By definition, HG contains a perfect matching between X and R1,
plus an isolated vertex for R0. Therefore, the VC-dimension of HG equals 1.

Assume now that ω(G) ≤ k − 1 with k ≥ 3 and suppose for the sake of contradiction that
there exists a k-element subset Y ⊆ V (HG) which is shattered by closed neighborhoods in
HG. By definition, HG is a split graph with clique X and independent set R.

▷ Claim. We either have Y ⊆ X or Y ⊆ R.

Proof. The proof is based on observations similar to the ones in [15, Proof of Lemma 11].
Assume that Y intersects both X and R. Since |Y | ≥ 3, we can take distinct elements
x, y, z ∈ Y with x ∈ X, z ∈ R and y belonging to either X or R. Suppose first that y /∈ N [z].
Let v ∈ V (HG) be such that N [v] ∩ {x, y, z} = {y, z}. Since y /∈ N [z] and R is a stable
set, necessarily v ∈ X. But then, x ∈ N [v] because X is a clique, thus contradicting that
N [v] ∩ {x, y, z} = {y, z}. As a result, we must have y ∈ N [z]. Let u ∈ V (HG) be such that
N [u] ∩ {x, y, z} = {x, z}. Since u, y ∈ N [z] and N [z] is a clique, necessarily y ∈ N [u]. Again,
the latter contradicts our assumption that N [u] ∩ {x, y, z} = {x, z}. ◀

SEA 2024

https://doi.org/10.1016/0012-365X(81)90274-0

23:18 Practical Computation of Graph VC-Dimension

First we suppose that Y ⊆ X. Since we assumed that the VC-dimension of HG is strictly
less than k, Y is not shattered in HG. Thus

there exists Z ⊆ Y that is not a trace of any range in R. (1)

Since Y is shattered by HG, there is a vertex vZ ∈ V (HG) such that N [vZ] ∩ Y = Z. The
definition of HG and (1) imply that there is no v ∈ R such that its neighborhood in HG

satisfies N [v] ∩ Y = Z and so we get that vZ ∈ X. Since HG[X] is a clique, we conclude that
Z = Y . However, there exists a range in R3 which contains the entire set Y (namely, the
one corresponding to the full set S = {1, 2 . . . , k}), a contradiction with (1).

Finally, we consider the case of Y ⊆ R. Let y ∈ Y be any vertex. Since Y is shattered,
each of the 2k−1 subsets of Y that contain y is either the trace of N [y] or the trace of N [x] for
some neighbor x of y. Therefore, |N [y]| ≥ 2k−1 ≥ 4, and so the range in HG corresponding
to y has size at least 3, in particular, y ∈ R3. For any Y ⊆ R3, the closed neighborhoods of
the vertices of HG can have the following traces on Y :

if v ∈ R, then N [v] ∩ Y is equal to {v} if v ∈ Y and ∅ otherwise;
if v = (x, i) ∈ X, then N [v] ∩ Y contains those vertices of Y that correspond to index
sets S with i ∈ S (see the definition of R3).

That is, the neighborhoods of vertices in R can only induce the empty set and the k singleton
traces on Y , and for any x, y ∈ V (G) and i ∈ {1, 2 . . . , k}, we have N [(x, i)]∩Y = N [(y, i)]∩Y .
This implies that the number of vertices in X that have pairwise different neighborhoods in
Y is at most k. On the other hand, since Y is shattered, we need to obtain each of the 2k

subsets of Y as a trace, which implies that 2k ≤ k+k+1, and thus k ≤ 2, a contradiction. ◀

B Simple bounds

▶ Lemma 7. A k-degenerate graph has VC-dimension at most k + 1, and this bound is sharp.

Proof. Let G = (V, E) be a k-degenerate graph and consider a shattered set X ⊆ V . Let
Z = X ∪ {vY | Y ⊆ X}, where vY denotes an arbitrary vertex such that N [vY] ∩ X = Y .
We consider the induced subgraph G[Z] and we iteratively remove all vertices of Z \ X

with at most k neighbours. Let Z ′ be the set of remaining vertices. Note that X ⊆ Z ′.
Since G[Z ′] is also k-degenerate, it has some vertex x with at most k neighbours. Since
we iteratively removed all vertices with at most k neighbours in Z \ X, then necessarily
x ∈ X. Furthermore, all vertices of Z \ Z ′ must be of the form vY for some |Y | ≤ k. As a
result, the number of neighbours of x in G[Z] is no more than k +

∑k−1
i=0

(|X|−1
i

)
. However,

since X is shattered, and there are 2|X|−1 subsets of X containing vertex x, we must have
|N [x] ∩ Z| ≥ 2|X|−1. In particular, the number of neighbours of x in G[Z] must be at least
2|X|−1 − 1. Suppose by contradiction that k < |X| − 1. Then,

k +
k−1∑
i=0

(
|X| − 1

i

)
= k + 2|X|−1 −

|X|−1∑
i=k

(
|X| − 1

i

)

≤ k + 2|X|−1 −
|X|−1∑

i=|X|−2

(
|X| − 1

i

)

= k + 2|X|−1 −
(

|X| − 1
|X| − 2

)
−

(
|X| − 1
|X| − 1

)
= k + 2|X|−1 − |X|

< 2|X|−1 − 1

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:19

Table 4 VC-dimension lower bounds computed with maxvisits = 16, 32, 64, 128, 256 (bold values
indicate that the bound matches the exact value), and the corresponding execution time, the “read”
column corresponds to the time for reading the graph.

lower-bound time (s)
Graph VC-dim 16 32 64 128 256 read 16 32 64 128 256
BIO-MV-Physical-3.5 5 5 5 5 5 5 0.06 0.05 0.05 0.05 0.05 0.10
BIO-SYS-Aff-Cap-MS-3.5 7 6 6 7 7 7 0.15 0.18 0.18 0.18 0.20 0.23
BIO-SYS-Aff-Cap-RNA-3.5 7 6 6 6 6 7 0.02 0.03 0.02 0.03 0.03 0.04
dip20170205 5 5 5 5 5 5 0.04 0.05 0.05 0.05 0.06 0.07
oregon2-010331 6 5 5 5 5 5 0.01 0.02 0.02 0.02 0.02 0.04
CAIDA-as-20130601 7 6 6 6 6 7 0.07 0.09 0.09 0.09 0.11 0.13
DIMES-201204 7 6 7 7 7 7 0.04 0.05 0.05 0.05 0.05 0.06
as-skitter 8 7 7 8 8 8 6.11 7.04 7.42 7.98 8.24 9.92
p2p-Gnutella09 5 5 5 5 5 5 0.01 0.02 0.02 0.02 0.02 0.03
gnutella31 4 3 3 3 3 3 0.12 0.11 0.11 0.13 0.18 0.26
notreDame 6 3 3 4 5 6 0.74 1.05 1.16 1.12 1.19 1.20
y-BerkStan 7 5 7 7 7 7 3.49 4.87 4.88 5.08 5.39 5.88
ca-HepPh 5 5 5 5 5 5 0.06 0.07 0.10 0.08 0.10 0.14
com-dblp 5 4 4 4 4 0 0.58 0.71 0.78 0.81 0.95 0.00
epinions1 7 6 7 7 7 7 0.25 0.33 0.35 0.36 0.40 0.46
facebook-combined 6 5 6 6 6 6 0.04 0.04 0.05 0.06 0.07 0.10
twitter-combined 7 6 7 6 6 6 0.64 0.70 0.70 0.82 1.03 1.45
t.CAL 3 3 3 3 3 3 3.30 4.61 4.53 4.52 4.53 4.60
t.FLA 3 3 3 3 3 3 1.83 2.45 2.50 2.45 2.44 2.43
buddha 4 3 3 3 3 3 2.13 2.73 2.63 3.27 3.16 4.13
froz 3 3 3 3 3 3 1.43 1.98 2.54 3.02 4.46 6.91
z-alue7065 3 3 3 3 3 3 0.03 0.04 0.04 0.03 0.04 0.03
grid300-10 3 3 3 3 3 3 0.16 0.21 0.23 0.22 0.21 0.20
xgrid500-10 3 3 3 3 3 3 0.50 0.61 0.83 0.62 0.62 0.64
powerlaw2.5 6 6 6 6 6 6 1.38 3.33 3.50 3.36 3.49 3.70

A contradiction. Hence, |X| ≤ k + 1. This is sharp for k = 1 because trees are 1-degenerate,
and there exist 2-shattered subsets in trees (e.g., any two leaves in a star with at least three
leaves). ◀

Finally, we show upper bounds on the VC-dimension in terms of sizes of maximum and
maximal matchings.

▶ Lemma 8. Let G = (V, E) be a non-empty graph and M be a maximal matching of G.
Then the VC-dimension of G is at most 2|M |. Moreover, if ν(G) is the size of a maximum
matching in G, then we have VCdim(G) ≤ ν(G) + 1.

Proof. Since G is non-empty, any maximal matching has at least one edge and thus the
statements trivially hold if VCdim(G) ≤ 2. Let X ⊆ V be a shattered set of size VCdim(G).
If M covers every vertex of X, then we have |M | ≥ 1

2 · VCdim(G). Assume that there exists
x ∈ X which is not covered by M . Since M is maximal, each of the at least 2VCdim(G)−1 − 1
neighbors of x need to be covered by M , which implies |M | ≥ 1

2 ·
(
2VCdim(G)−1 − 1

)
≥

1
2 VCdim(G) for any graph with VCdim(G) ≥ 3.

To show that VCdim(G) ≤ ν(G) + 1, it is sufficient to construct a matching where |X| − 1
vertices of X are matched to a vertex outside of X. Since X is shattered, for any x ∈ X,
there exists a vertex vx ∈ V (G) such that N [vx] ∩ X = {x}. Observe that we have either
vx /∈ X or vx = x and the second option is only possible if x has no neighbors in X. We
build a matching M of size |X| − 1 as follows. First we add all edges {x, vx} to M where
x ∈ X is such that it has at least one neighbor in X. After this, if there is a remaining

SEA 2024

23:20 Practical Computation of Graph VC-Dimension

set Y ⊆ X which is not yet covered by M , then Y has to be a stable set. Since X is
shattered, there is a vertex vY such that vY ∩ X = Y . As Y is a stable set, vY /∈ Y if
|Y | ≥ 2. Thus, we can cover each element of Y (except maybe one) by taking any y ∈ Y ,
adding {vY , y} to M , and recursing on Y ′ = Y \ {y}. In the end, we get a matching of size
|M | ≥ |X \ Y | + |Y | − 1 = VCdim(G) − 1. ◀

Note that stars with at least three leaves have matching number one and VC-dimension two,
thus the bound of Lemma 8 is sharp.

C Experiments

C.1 Lower-bound computation
Table 4 gives the lower-bounds obtained by our lower-bound heuristic for various values of
maxvisits while KBG uses maxvisits = 64. It also provides the corresponding running
times for reading the graph and computing the lower-bound. As a reference, column “read”
indicates the time spent for just reading the graph.

We observe a tradeof where increasing maxvisits provides generally a better lower-bound
at the cost of a longer running time. Note the exception of twitter-combined for which
the best bound is obtained only for maxvisits = 32. We also note that the running time
stays within a factor 5 of the time taken for reading the graph, even for maxvisits = 256.
The exception of twitter-combined let us think that there is room for improvement of the
tuning of our heuristic. For example, the choice of maxvisits/2 for limiting the for loop
of ExploreShattered was not intensively explored. However, it already provides lower-
bounds which are often exact or one less than the true VC-dimension. This is indeed the
case for maxivists = 128, and almost the case for maxvisits = 64 where notreDame is the
only exception with a lower-bound which is two less than the VC-dimension.

Table 5 Some upper-bounds of Lemma 4 compared to lower-bounds and true VC-dimension.

graph lb64 VCdim ⌊log ∆⌋+ 1 ⌊log n⌋ degen+1
BIO-MV-Physical-3.5 5 5 11 14 37
BIO-SYS-Aff-Cap-MS-3.5 7 7 12 15 52
BIO-SYS-Aff-Cap-RNA-3.5 6 7 12 13 55
dip20170205 5 5 9 14 22
oregon2-010331 5 6 12 13 32
CAIDA-as-20130601 6 7 12 15 69
DIMES-201204 7 7 12 14 35
as-skitter 8 8 16 20 112
p2p-Gnutella09 5 5 7 12 11
gnutella31 3 4 7 15 7
notreDame 4 6 14 18 156
y-BerkStan 7 7 17 19 202
ca-HepPh 5 5 9 13 239
com-dblp 4 5 9 18 114
epinions1 7 7 12 16 68
facebook-combined 6 6 11 11 116
twitter-combined 6 7 12 16 97
t.CAL 3 3 4 20 4
t.FLA 3 3 4 20 4
buddha 3 4 5 19 6
froz 3 3 4 19 5
z-alue7065 3 3 3 15 3
grid300-10 3 3 3 16 3
xgrid500-10 3 3 3 17 3
powerlaw2.5 6 6 14 19 19

D. Coudert and M. Csikós and G. Ducoffe and L. Viennot 23:21

C.2 Upper bounds
Table 5 lists the upper-bounds we can quickly compute on our dataset. The degree upper-
bound ⌊log ∆⌋ + 1 where ∆ is the maximum degree appears to always be the best one.
However, it can be as large as twice the true value and gives a poor confidence bound
compared to what we obtained for lower-bounds. The node upper-bound ⌊log n⌋ where n is
the number of nodes is almost always greater. The only graph where it matches the degree
upper-bound is facebook-combined which has high maximum degree ∆ compared to its
number n of nodes as it satisfies ∆ > n/4 (see Table 1). Finally, the degeneracy upper-bound
appears to be good on graphs with low degree, that is road networks and grid like graphs,
while it can be very high for graphs with many high degree nodes. Note that it can be quite
high even for graphs with relatively low VC-dimension such as ca-HepPh.

SEA 2024

	1 Introduction
	2 Definitions and notation
	3 W[1]-hardness
	4 Simple bounds
	5 Algorithm
	5.1 Outline of the method
	5.2 Lower-bound computation
	5.3 Optimizations

	6 Experiments
	6.1 Dataset
	6.2 Graphs and reference time
	6.3 Analysis: shattered sets and high degree nodes
	6.4 Lower and upper bounds
	6.5 Optimizations
	6.6 VC-dimension of random graphs

	7 Conclusion
	A Proof of Theorem 1
	B Simple bounds
	C Experiments
	C.1 Lower-bound computation
	C.2 Upper bounds

